Etiket arşivi: data

Yapay Sinir Ağlarında Veri Gösterimi – TENSOR

TENSOR Nedir?

Temel olarak tensor, makina öğrenmesi sistemlerinde verinin tutulması için kullanılan bir yapıdır diyebiliriz. Örneğin matrisleri 2D tensor olarak adlandırabiliriz. Tensor, matrislerin rastgele sayıda boyuta genişletilmesidir. Tensor bağlamında boyut(dimension) yerine daha çok eksen(axis) terimi kullanılır.

Scalars (0D Tensor)

Tek bir sayı içeren tensorlere scalar denir. (0D tensor). Örneğin Numpy’de float32 ve float64 sayıları bir scalar tensor’dür. Numpy’de tensor’ün eksenlerini ndim attribute’ü ile gösterebiliriz. Scalar bir tensor’de 0 boyut vardır. (ndim==0). Tensor’un eksen sayısına aynı zamanda onun rank’I(derecesi) denir. Örnek bir Numpy scalar’ı aşağıdaki gibidir.

>>> import numpy as np
>>> x = np.array(84)
>>> x
array(84)
>>> x.ndim
0

Vectorler (1D Tensorler)

Sayılar dizisine vektör veya 1D tensor deriz. 1D tensor’de sadece bir eksen bulunur. Örnek bir Numpy vektörü aşağıdaki gibidir:

>>> import numpy as np
>>> x = np.array([12, 24, 5, 6, 26])
>>> x
array([12, 24, 5, 6, 26])
>>> x.ndim
1

Burada vektörümüzün 5 girdisi bulunur. Yani bu vektöre 5-boyutlu-vektör diyebiliriz. Burada en önemli şey 5D vektör ile 5D tensor’ü karıştırmamaktır. 5D vektörde bir eksen ve 5 boyut bulunurken 5D tensorde 5 eksen ve bu eksenlere ait bir çok boyut bulunabilir.

Matrisler (2D Tensorler)

Vektör dizilerini matris veya 2D tensor olarak adlandırabiliriz. Matrisin iki ekseni satırlar(rows) ve sütunlar(columns) diye adlandırılır. Örnek bir Numpy matrisi:

>>> import numpy as np
>>> x = np.array([[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]])
>>> x.ndim
2

Burada ilk eksene satırlar ikinci eksene sütunlar denir. Bizim örneğimiz için x’in ilk satırı [5, 78, 2, 34, 0], ilk sütunu ise [5, 6, 7] dir.

3D ve daha fazla boyutlu Tensorler

Örneğin matrislerden bir dizi elde etmek istersek 3D tensor elde ederiz. Aynı şekilde 3D tensorlerden bir dizi oluşturursakda 4D tensor elde ederiz. Derin öğrenmede genede 0D ve 4D tensorleri kullanacağız. Bazı durumlarda örneğin video verisi işlerken 5D tensorlerden faydalanabiliriz.

>>> x = np.array([[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]],
[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]],
[[5, 78, 2, 34, 0],
[6, 79, 3, 35, 1],
[7, 80, 4, 36, 2]]])
>>> x.ndim
3

Tensorlerin Anahtar Özellikleri

Bir tensorde temel olarak üç özellikten bahsedebiliriz. Bunlar:
1. Eksen Sayısı(Rank): Tensorün eksenini belirtir.

2. Form (Shape):
Tensor’ün formu her eksen kaç boyut olduğunu söyler. Örneğin yukarıdaki örnek matrisimizde matrisin formu (3,5)
3D tensorde ise (3,3,5)’tir.

3. Veri Tipi (Data Type)
Tensor için bulunan verinin tipini belirtir. bir tensorun içinde bulunan verinin tipi float32, uint8, float64 olabilir. Çok nadir durumlarda veri tipi char da olabilir. Ancak string tensorler Numpy ve çoğu diğer tensor kütüphanelerinde desteklenmez. Çünkü tensorler allocate edildikleri anda bellekte yaşarlar, sürekli hafıza segmentlerinde tutulurlar. Stringler ise değişken boyutlu olacağı için bu şekilde implement etmek zor olacaktır.


Loading

Facebooktwitterredditpinterestlinkedinmail

Soyut Veri Tipleri (ADT) ve Veri Yapıları

ADT(Abstract Data Type) değerler kümesi ve o değerler kümesi üzerinde gerçekleştirilen işlemleri içerir. Java gibi nesne yönelimli dillerde ADT->Interfaces(Arayüzler)’e denk düşer. Arayüzü implement eden herhangi bir sınıf :

a. Bu sınıfa ait instance oluşturabilir; (burada “instance” değere(value) karşılık düşüyor). Örneğin List ADT’si kullanılarak oluşturulan:

-List listem;

gibi. Burada listem ADT’den üretilmiş instance’tır yani değerimiz.

b. Sınıfa ait public metodları çağırabilir. (Burada “public metod” “işlemlere(operation)” karşılık düşer.) Örneğin yukarıda türettiğimiz listem adlı listemize eleman eklemek için kullanacağımız:

-listem.add(“item”);

adtvsds

Loading

Facebooktwitterredditpinterestlinkedinmail